

 ⚲

 Project

 General

 Profile

 	Sign in
	Register

 	Home
	Projects
	News
	Issues
	Activity
	Help
	Git
	Forum
	Mailing lists
	Planet
	Impressum

 Search:

 rtl-sdr

All Projects

 SDR (Software Defined Radio) » rtl-sdr

 	Overview
	Activity
	Roadmap
	Issues
	News
	Wiki
	Repository

 [bookmark: Sidebar]
Sidebar¶

		Windows builds
	Binary_Packages (Linux)
	Forum

Wiki

	Start page
	Index by title
	Index by date

 Actions
 History

 	Table of contents
	rtl-sdr	Specifications
	Supported Hardware
	Software	Binary Builds	Windows

	Source Code
	Building the software	rtlsdr library & capture tool
	Gnuradio Source
	Automated installation

	Mailing List	Usage	rtl-sdr
	rtl_tcp
	rtl_test

	Using the data
	Known Apps
	Credits

	[bookmark: rtl-sdr]
rtl-sdr¶

	DVB-T dongles based on the Realtek RTL2832U can be used as a cheap SDR, since the chip allows transferring the raw I/Q samples to the host, which is officially used for DAB/DAB+/FM demodulation. The possibility of this has been discovered by Eric Fry (History and Discovery of RTLSDR). Antti Palosaari has not been involved in development of rtl-sdr.

	[bookmark: Specifications]
Specifications¶

	The RTL2832U outputs 8-bit I/Q-samples, and the highest theoretically possible sample-rate is 3.2 MS/s, however, the highest sample-rate without lost samples that has been tested wit regular USB controllers so far is 2.4 MS/s. A stable sample-rate of 3.2 MS/s without lost samples is only possible with the Etron EJ168/EJ188/EJ198 series of host controllers due to their specific maximum latency. The frequency range is highly dependent of the used tuner, dongles that use the Elonics E4000 offer the widest possible range (see table below).

		Tuner	Frequency range
	Elonics E4000	52 - 2200 MHz with a gap from 1100 MHz to 1250 MHz (varies)
	Rafael Micro R820T	24 - 1766 MHz
	Rafael Micro R828D	24 - 1766 MHz
	Fitipower FC0013	22 - 1100 MHz (FC0013B/C, FC0013G has a separate L-band input, which is unconnected on most sticks)
	Fitipower FC0012	22 - 948.6 MHz
	FCI FC2580	146 - 308 MHz and 438 - 924 MHz (gap in between)

	[bookmark: Supported-Hardware]
Supported Hardware¶

	Note: Many devices with EEPROM have 0x2838 as PID and RTL2838 as product name, but in fact all of them have an RTL2832U inside.
Realtek never released a chip marked as RTL2838 so far.
The following devices are known to work fine with RTLSDR software:

		VID	PID	tuner	device name
	0x0bda	0x2832	all of them	Generic RTL2832U (e.g. hama nano)
	0x0bda	0x2838	E4000	ezcap USB 2.0 DVB-T/DAB/FM dongle
	0x0ccd	0x00a9	FC0012	Terratec Cinergy T Stick Black (rev 1)
	0x0ccd	0x00b3	FC0013	Terratec NOXON DAB/DAB+ USB dongle (rev 1)
	0x0ccd	0x00d3	E4000	Terratec Cinergy T Stick RC (Rev.3)
	0x0ccd	0x00e0	E4000	Terratec NOXON DAB/DAB+ USB dongle (rev 2)
	0x185b	0x0620	E4000	Compro Videomate U620F
	0x185b	0x0650	E4000	Compro Videomate U650F
	0x1f4d	0xb803	FC0012	GTek T803
	0x1f4d	0xc803	FC0012	Lifeview LV5TDeluxe
	0x1b80	0xd3a4	FC0013	Twintech UT-40
	0x1d19	0x1101	FC2580	Dexatek DK DVB-T Dongle (Logilink VG0002A)
	0x1d19	0x1102	?	Dexatek DK DVB-T Dongle (MSI DigiVox mini II V3.0)
	0x1d19	0x1103	FC2580	Dexatek Technology Ltd. DK 5217 DVB-T Dongle
	0x0458	0x707f	?	Genius TVGo DVB-T03 USB dongle (Ver. B)
	0x1b80	0xd393	FC0012	GIGABYTE GT-U7300
	0x1b80	0xd394	?	DIKOM USB-DVBT HD
	0x1b80	0xd395	FC0012	Peak 102569AGPK
	0x1b80	0xd39d	FC0012	SVEON STV20 DVB-T USB & FM

	People over at reddit are collecting a list of other devices that are compatible.

	If you find a device that is not yet in the device list but should be supported, please send the VID/PID and additional info (used tuner, device name) to our mailing list.

	This is the PCB of the ezcap-stick:
[image: top view of the ezcap PCB]
More pictures can be found here.

	[bookmark: Software]
Software¶

	Much software is available for the RTL2832. Most of the user-level packages rely on the librtlsdr library which comes as part of the rtl-sdr codebase. This codebase contains both the library itself and also a number of command line tools such as rtl_test, rtl_sdr, rtl_tcp, and rtl_fm. These command line tools use the library to test for the existence of RTL2832 devices and to perform basic data transfer functions to and from the device.

	Because most of the RTL2832 devices are connected using USB, the librtlsdr library depends on the libusb library to communicate with the device.

	At the user level, there are several options for interacting with the hardware. The rtl-sdr codebase contains a basic FM receiver program that operates from the command line. The rtl_fm program is a command line tool that can initialize the RTL2832, tune to a given frequency, and output the received audio to a file or pipe the output to command line audio players such as the alsa aplay or the sox play commands. There is also the rtl_sdr program that will output the raw I-Q data to a file for more basic analysis.

	For example, the following command will do reception of commercial wide-band FM signals:

rtl_fm -f 96.3e6 -M wbfm -s 200000 -r 48000 - | aplay -r 48k -f S16_LE

	On a Mac, a similar command that works is as follows. This assumes that the sox package is installed, 'port install sox':

rtl_fm -f 90100000 -M wbfm -s 200000 -r 48000 - | play -r 48000 -t s16 -L -c 1 -

	If you want to do more advanced experiments, the GNU Radio collection of tools can be used to build custom radio devices. GNU Radio can be used both from a GUI perspective in which you can drag-and-drop radio components to build a radio and also programmatically where software programs written in C or Python are created that directly reference the internal GNU Radio functions.

	The use of GNU Radio is attractive because of the large number of pre-built functions that can easily be connected together. However, be aware that this is a large body of software with dependencies on many libraries. Thankfully there is a simple script that will perform the installation but still, the time required can be on the order of hours. When starting out, it might be good to try the command line programs that come with the rtl-sdr package first and then install the GNU Radio system later.

	[bookmark: Binary-Builds]
Binary Builds¶

	[bookmark: Windows]
Windows¶

	While Osmocom in general is a very much Linux-centric development community, we are now finally publishing automatic weekly Windows binary builds for the most widely used Osmocom SDR related projects: rtl-sdr and osmo-fl2k.

You can find the binaries at
		https://ftp.osmocom.org/binaries/windows/osmo-fl2k/
	https://ftp.osmocom.org/binaries/windows/rtl-sdr/

The actual builds are done by roox who is building them using MinGW on OBS, see
		https://build.opensuse.org/project/show/network:osmocom:mingw:mingw32 and
	https://build.opensuse.org/project/show/network:osmocom:mingw:mingw64

	The status of the osmocom binary publish job, executed once per week from now on, can be found at https://jenkins.osmocom.org/jenkins/view/All%20no%20Gerrit/job/Osmocom-OBS_MinGW_weekly_publish/

	[bookmark: Source-Code]
Source Code¶

	The rtl-sdr code can be checked out with:

git clone https://gitea.osmocom.org/sdr/rtl-sdr.git

	It can also be browsed via gitea, and there's an official mirror on github that also provides tagged releases.

	If you are going to "fork it on github" and enhance it, please contribute back and submit your patches to: osmocom-sdr at lists.osmocom.org

	A gr-osmosdr GNU Radio source block for OsmoSDR and rtl-sdr is available. Please install a recent gnuradio (>= v3.6.4) in order to be able to use it.

	[bookmark: Building-the-software]
Building the software¶

	[bookmark: rtlsdr-library-amp-capture-tool]
rtlsdr library & capture tool¶

	You have to install development packages for libusb1.0 and can either use cmake or autotools to build the software.

	Please note: prior pulling a new version from git and compiling it, please do a "make uninstall" first to properly remove the previous version.

	Building with cmake:

cd rtl-sdr/
mkdir build
cd build
cmake ../
make
sudo make install
sudo ldconfig

	In order to be able to use the dongle as a non-root user, you may install the appropriate udev rules file by calling cmake with -DINSTALL_UDEV_RULES=ON argument in the above build steps.

cmake ../ -DINSTALL_UDEV_RULES=ON

	Building with autotools:

cd rtl-sdr/
autoreconf -i
./configure
make
sudo make install
sudo ldconfig

	The built executables (rtl_sdr, rtl_tcp and rtl_test) can be found in rtl-sdr/src/.

	In order to be able to use the dongle as a non-root user, you may install the appropriate udev rules file by calling

sudo make install-udev-rules

	[bookmark: Gnuradio-Source]
Gnuradio Source¶

	The Gnu Radio source requires a recent gnuradio (>= v3.7 if building master branch or 3.6.5 when building gr3.6 branch) to be installed.

	The source supports direct device operation as well as a tcp client mode when using the rtl_tcp utility as a spectrum server.

	Please note: prior pulling a new version from git and compiling it, please do a "make uninstall" first to properly remove the previous version.

	Please note: you always should build & install the latest version of the dependencies (librtlsdr in this case) before trying to build the gr source. The build system of gr-osmosdr will recognize them and enable specific source/sink components thereafter.

	Building with cmake (as described in the gr-osmosdr wiki page):

git clone https://gitea.osmocom.org/sdr/gr-osmosdr
cd gr-osmosdr/

	If you are building for gnuradio 3.6 series, you have to switch to the gr3.6 branch as follows

git checkout gr3.6

	then continue with

mkdir build
cd build/
cmake ../

	Now cmake should print out a summary of enabled/disabled components. You may disable certain components by following guidelines shown by cmake. Make sure the device of your interest is listed here. Check your dependencies and retry otherwise.

-- ##
-- # gr-osmosdr enabled components
-- ##
-- * Python support
-- * Osmocom IQ Imbalance Correction
-- * sysmocom [[OsmoSDR]]
-- * [[FunCube]] Dongle
-- * IQ File Source
-- * Osmocom RTLSDR
-- * RTLSDR TCP Client
-- * Ettus USRP Devices
-- * Osmocom [[MiriSDR]]
-- * [[HackRF]] Jawbreaker
--
-- ##
-- # gr-osmosdr disabled components
-- ##
--
-- Building for version: 4c101ea4 / 0.0.1git
-- Using install prefix: /usr/local

	Now build & install

make
sudo make install
sudo ldconfig

	NOTE: The osmocom source block (osmocom/RTL-SDR Source) will appear under 'Sources' category in GRC menu.

	For initial tests we recommend the multimode receiver gnuradio companion flowgraph (see "Known Apps" table below).

	You may find more detailed installation instructions in this recent tutorial.

	[bookmark: Automated-installation]
Automated installation¶

	Marcus D. Leech has kindly integrated the forementioned build steps into his gnuradio installation script at "This is the most user-friendly option so far.

	[bookmark: Mailing-List]
Mailing List¶

We discuss both OsmoSDR as well as rtl-sdr on the following
		web forum: https://discourse.osmocom.org/c/sdr
	mailing list: [mailto:osmocom-sdr@lists.osmocom.org].

	You can subscribe and/or unsubscribe via the following link: https://lists.osmocom.org/mailman/listinfo/osmocom-sdr

	Please make sure to read the MailingListRules before posting.

	[bookmark: Usage]
Usage¶

	[bookmark: rtl-sdr-2]
rtl-sdr¶

	Example: To tune to 392.0 MHz, and set the sample-rate to 1.8 MS/s, use:

./rtl_sdr /tmp/capture.bin -s 1.8e6 -f 392e6

	to record samples to a file or to forward the data to a fifo.

	If the device can't be opened, make sure you have the appropriate rights to access the device (install udev-rules from the repository, or run it as root).

	[bookmark: rtl_tcp]
rtl_tcp¶

	Example:

rtl_tcp -a 10.0.0.2 [-p listen port (default: 1234)":http://www.sbrac.org/files/build-gnuradio].
Found 1 device(s).
Found Elonics E4000 tuner
Using Generic RTL2832U (e.g. hama nano)
Tuned to 100000000 Hz.
listening...
Use the device argument 'rtl_tcp=10.0.0.2:1234' in [[OsmoSDR]] (gr-osmosdr) source
to receive samples in GRC and control rtl_tcp parameters (frequency, gain, ...).

	use the rtl_tcp=... device argument in gr-osmosdr source to receive the samples in GRC and control the rtl settings remotely.

	This application has been successfully crosscompiled for ARM and MIPS devices and is providing IQ data in a networked ADS-B setup at a rate of 2.4MSps. The gr-osmosdr source is being used together with an optimized gr-air-modes version (see Known Apps below).
It is also available as a package in OpenWRT.

	A use case is described here.

	[bookmark: rtl_test]
rtl_test¶

	To check the possible tuning range (may heavily vary by some MHz depending on device and temperature), call

rtl_test -t

	To check the maximum samplerate possible on your machine, type (change the rate down until no sample loss occurs):

rtl_test -s 3.2e6

A samplerate of 2.4e6 is known to work even over tcp connections (see rtl_tcp above). A sample rate of 2.88e6 may work without lost samples but this may depend on your PC/Laptop's host interface.

	[bookmark: Using-the-data]
Using the data¶

	To convert the data to a standard cfile, following GNU Radio Block can be used:br
[image:]
The GNU Radio Companion flowgraph is available as rtl2832-cfile.grc. It is based on the FM demodulation flowgraph posted by Alistair Buxton on this thread.

	Please note: for realtime operation you may use fifos (mkfifo) to forward the iq data from the capture utility to the GRC flowgraph.

	You may use any of the the following gnuradio sources (they are equivalent):

	[image: gr-osmosdr sources]

	What has been successfully tested so far is the reception of Broadcast FM and air traffic AM radio, tetra, gmr, GSM, ADS-B and POCSAG.

	Tell us your success story with other wireless protocols in ##rtlsdr channel on the libera IRC network.

	[bookmark: Known-Apps]
Known Apps¶

	The following 3rd party applications and libraries are successfully using either librtlsdr directly or the corresponding gnuradio source (gr-osmosdr):

		Name	Type	Author	URL
	gr-pocsag	GRC Flowgraph	Marcus Leech	https://www.cgran.org/browser/projects/gr-pocsag/trunk
	multimode RX (try first!)	GRC Flowgraph	Marcus Leech	https://www.cgran.org/browser/projects/multimode/trunk
	simple_fm_rvc	GRC Flowgraph	Marcus Leech	https://www.cgran.org/browser/projects/simple_fm_rcv/trunk
	python-librtlsdr	Python Wrapper	David Basden	https://github.com/dbasden/python-librtlsdr
	pyrtlsdr	Python Wrapper	Roger	https://github.com/roger-/pyrtlsdr
	rtlsdr-waterfall	Python FFT GUI	Kyle Keen	https://github.com/keenerd/rtlsdr-waterfall
	Wireless Temp. Sensor RX	Gnuradio App	Kevin Mehall	https://github.com/kevinmehall/rtlsdr-433m-sensor
	QtRadio	SDR GUI	Andrea Montefusco et al.	http://napan.ca/ghpsdr3/index.php/RTL-SDR
	gqrx	SDR GUI	Alexandru Csete	https://github.com/csete/gqrx
	rtl_fm	SDR CLI	Kyle Keen	merged in librtlsdr master
	SDR#	SDR GUI	Youssef Touil	http://sdrsharp.com/ and Windows Guide or Linux Guide
	tetra_demod_fft	Trunking RX	osmocom team	osmosdr-tetra_demod_fft.py and the HOWTO
	airprobe	GSM sniffer	osmocom team et al	http://git.gnumonks.org/cgi-bin/gitweb.cgi?p=airprobe.git
	gr-smartnet (WIP)	Trunking RX	Nick Foster	http://www.reddit.com/r/RTLSDR/comments/us3yo/rtlsdr_smartnet/ Notes from the author
	gr-air-modes	ADS-B RX	Nick Foster	https://www.cgran.org/wiki/gr-air-modes call with --rtlsdr option
	Linrad	SDR GUI	Leif Asbrink (SM5BSZ)	http://www.nitehawk.com/sm5bsz/linuxdsp/hware/rtlsdr/rtlsdr.htm" DAGC changes were applied to librtlsdr master
	gr-ais (fork)	AIS RX	Nick Foster, Antoine Sirinelli, Christian Gagneraud	https://github.com/chgans/gr-ais
	GNSS-SDR	GPS RX (Realtime!)	Centre Tecnològic de elecomunicacions de Catalunya	Documentation and http://www.gnss-sdr.org/
	LTE-Cell-Scanner	LTE Scanner / Tracker	James Peroulas, Evrytania LLC	http://www.evrytania.com/lte-tools https://github.com/Evrytania/LTE-Cell-Scanner]
	LTE-Cell-Scanner OpenCL accelerated (new)	LTE Scanner / Tracker	Jiao Xianjun	https://github.com/JiaoXianjun/LTE-Cell-Scanner
	Simulink-RTL-SDR	MATLAB/Simulink wrapper	Michael Schwall, Sebastian Koslowski, Communication Engineering Lab (CEL), Karlsruhe Institute of Technology (KIT)	http://www.cel.kit.edu/simulink_rtl_sdr.php
	gr-scan	Scanner	techmeology	http://www.techmeology.co.uk/gr-scan/
	kalibrate-rtl	calibration tool	Joshua Lackey, Alexander Chemeris, Steve Markgraf	https://github.com/steve-m/kalibrate-rtl Windows build
	pocsag-mrt	Multichannel Realtime]Decoder	iZsh	https://github.com/iZsh/pocsag-mrt
	adsb#	ADS-B RX	Youssef Touil, Ian Gilmour	http://sdrsharp.com/index.php/a-simple-and-cheap-ads-b-receiver-using-rtl-sdr
	osmo-gmr-rtl	GMR1 RX	Dimitri Stolnikov	https://osmocom.org/projects/gmr/wiki/GettingStarted#RTLSDRdongles
	rtl_adsb	ADS-B RX	Kyle Keen	comes with the library
	dump1090	ADS-B RX	Salvatore Sanfilippo	https://github.com/antirez/dump1090
	rtl_433	Temperature Sensor Receiver	Benjamin Larsson	https://github.com/merbanan/rtl_433
	randio	Random number generator	Michel Pelletier	https://github.com/michelp/randio
	gr-wmbus	m-bus (EN 13757-4) RX	oWCTejLVlFyNztcBnOoh	https://github.com/oWCTejLVlFyNztcBnOoh/gr-wmbus
	ec3k	EnergyCount 3000 RX	Tomaž Šolc	https://github.com/avian2/ec3k
	RTLSDR-Scanner	Radio Scanner	EarToEarOak	https://github.com/EarToEarOak/RTLSDR-Scanner
	simple_ra	Radio Astronomy App	Marcus Leech	https://cgran.org/wiki/simple_ra
	rtlizer	Spectrum analyzer	Alexandru Csete	https://github.com/csete/rtlizer
	FS20_decode	FS20 Decoder	Thomas Frisch	https://github.com/eT0M/rtl_sdr_FS20_decoder
	OpenLTE	LTE Toolkit	Ben Wojtowicz	http://sourceforge.net/p/openlte/home/Home/
	rtltcpaccess	DAB compatibility layer	Steve Markgraf	https://github.com/steve-m/rtltcpaccess
	SDR-J	"Analog" SDR & DAB	Jan van Katwijk	http://www.sdr-j.tk
	RTLTcpSource	source for redhawk SDR framework	Michael Ihde	redhawk Docs page RTLTcpSource
	gortlsdr	Golang wrapper	Joseph Poirier	https://github.com/jpoirier/gortlsdr
	gr-rds (fork)	RDS + WBFM receiver	Dimitrios Symeonidis et al	https://github.com/bastibl/gr-rds
	NRF24-BTLE-Decoder	Decoder for 2.4 GHz NRF24 & Bluetooh LE	Omri Iluz	Code Blog post
	acarsdec	ACARS decoder	Thierry Leconte	http://sourceforge.net/projects/acarsdec/
	rtl-sdr-airband	air band reiceiver/ATIS	Wong Man Hang	https://github.com/microtony/RTLSDR-Airband

	Also take a look at the applications which use rtl-sdr through gr-osmosdr.

	Using our lib? Tell us! Don't? Tell us why! :)

	[image: spectrum view of GMR carriers]
Multiple GMR-carriers can be seen in a spectrum view with the full 3.2 MHz bandwidth (at 3.2 MS/s).

	[bookmark: Credits]
Credits¶

	rtl-sdr is developed by Steve Markgraf, Dimitri Stolnikov, and Hoernchen, with contributions by Kyle Keen, Christian Vogel and Harald Welte.

 Files (9)

	
 rtl2832-cfile.png 	
 View

 rtl2832-cfile.png 	
 23.8 KB
 		
 steve-m, 03/17/2012 08:35 PM
 	

	
 ezcap_top.jpg 	
 View

 ezcap_top.jpg 	
 178 KB
 	top view of the ezcap PCB	
 steve-m, 03/17/2012 08:41 PM
 	

	
 rtl2832-cfile.grc 	
 rtl2832-cfile.grc 	
 8.56 KB
 	GRC flowgraph for the RTL2832 file format	
 steve-m, 03/17/2012 08:45 PM
 	

	
 rtl-sdr-gmr.png 	
 View

 rtl-sdr-gmr.png 	
 42.4 KB
 	spectrum view of GMR carriers	
 steve-m, 03/17/2012 09:27 PM
 	

	
 EZTV666.JPG 	
 View

 EZTV666.JPG 	
 163 KB
 	Similar but smaller EZTV 666 receiver	
 laforge, 03/26/2012 06:49 PM
 	

	
 rtl-sdr.2.pdf 	
 View

 rtl-sdr.2.pdf 	
 1.78 MB
 	Presentation given at FreedomHEC 2012 Taipei	
 laforge, 06/20/2012 03:08 PM
 	

	
 osmosource.png 	
 View

 osmosource.png 	
 24.5 KB
 	gr-osmosdr sources	
 horiz0n, 07/08/2012 09:00 AM
 	

	
 RelWithDebInfo.zip 	
 RelWithDebInfo.zip 	
 416 KB
 	-	
 Hoernchen, 01/24/2014 04:33 PM
 	

	
 Histo_DATA_Packets.png 	
 View

 Histo_DATA_Packets.png 	
 21.8 KB
 		
 steve-m, 12/08/2019 04:10 PM
 	

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

 Updated by fixeria 5 months ago
 · 205 revisions

 Powered by Redmine © 2006-2022 Jean-Philippe Lang

Loading...

 Add picture from clipboard
 (Maximum size: 48.8 MB)

 [image:]

 [image:]

 [image:]

